Skip to content

[source]

Homogeneity#

A ground-truth clustering metric that measures the ratio of samples in a cluster that are also members of the same class. A cluster is said to be homogeneous when the entire cluster is comprised of a single class of samples.

Homogeneity=1H(C,K)H(C)

Note

Since this metric monotonically improves as the number of target clusters increases, it should not be used as a metric to guide hyper-parameter tuning.

Estimator Compatibility: Clusterer

Output Range: 0 to 1

Parameters#

This metric does not have any parameters.

Example#

use Rubix\ML\CrossValidation\Metrics\Homogeneity;

$metric = new Homogeneity();

Last update: 2021-01-26